sábado, 18 de mayo de 2019

Cuantificadores de lógica de primer orden


Un cuantificador es un operador sobre un conjunto de individuos, se trata de un recurso expresivo que permite construir proposiciones sobre conjuntos o, dicho de otra forma, un cuantificador es una expresión que afirma que una condición se cumple para un cierto número de individuos. En la lógica clásica, los dos cuantificadores más estudiados son el cuantificador universal y el cuantificador existencial. El primero afirma que una condición se cumple para todos los individuos de los que se está hablando, y el segundo que se cumple para al menos uno de los individuos. Por ejemplo, la expresión "para todo x" es un cuantificador universal, que antepuesto a "x < 3", produce:
Para todo x, x < 3
Esta es una expresión con valor de verdad, en particular, una expresión falsa, pues existen muchos números (muchos x) que son mayores que tres. Anteponiendo en cambio la expresión "para al menos un x", un cuantificador existencial, se obtiene:
Para al menos un x, x < 3
La cual resulta ser una expresión verdadera.
Adviértase ahora, sin embargo, que el valor de verdad de las dos expresiones anteriores depende de qué números se esté hablando. Si cuando se afirma "para todo x, x < 3", se está hablando solo de los números negativos, por ejemplo, entonces la afirmación es verdadera. Y si al afirmar "para al menos un x, x < 3" se está hablando solamente de los números 3, 4 y 5, entonces la afirmación es falsa. En lógica, a aquello de lo que se está hablando cuando se usa algún cuantificador, se lo llama el dominio de discurso.
Esta maquinaria se puede adaptar fácilmente para formalizar oraciones con cuantificadores del lenguaje natural. Tómese por caso la afirmación "todos son amigables". Esta oración se puede traducir así:
Para todo x, x es amigable.
Y una oración como "alguien está mintiendo" puede traducirse:
Para al menos un x, x está mintiendo.
También es frecuente traducir esta última oración así:
Existe al menos un x, tal que x está mintiendo.
A continuación, se formalizan ambas oraciones, introduciendo a la vez la notación especial para los cuantificadores:
Para todo x, x es amigable.
x A(x)
Existe al menos un x, tal que x está mintiendo.    

No hay comentarios.:

Publicar un comentario